Bug Report

Testing with an Accent

by Paul Carvalho

1 BOUGHT MICROSOFT’S WINDOWS XP
Home as soon as it came out several
years ago. At the time, I received a free
promotional package that included
some third-party applications: an anti-
virus program, a firewall application,
and a game of some kind.

I installed and set up Windows with-
out a hitch and then proceeded to install
the free software that I got along with it.
A funny thing happened after I installed
the antivirus program. Nothing. That is,
the install seemed to be successful; how-
ever, no amount of clicking icons or
coaxing executables could make the ap-
plication run.

Oh, what to do? I decided to hit the
Web to see if there were any updates to
the software I had. Turns out there was
a small patch for anyone installing the
program on an “International English
version of Windows.” The description
said that if you installed the program on
an operating system not set to English
(US), for example English (UK), then the
program wouldn’t open.

Fascinating. Until that moment, I
had never seen such a bug.

My new WinXP system just hap-
pened to be configured with a regional
setting other than the default. After all,
why have the option of customizing
your Windows “experience” and not
take it? Not wanting to change my set-
up, I downloaded the patch and voila,
the program opened. Now that I had it
working, I proceeded to think about
how it might have been tested and how I
might avoid missing such a bug when I
test.

This bug is an example of an interna-
tionalization bug. In today’s global soft-
ware market, it’s hard for me to think
that any application I help test will be
confined only to my local area and time
zone.

The key here is not to think of inter-

38 BETTER SOFTWARE FEBRUARY 2005

nationalization and localization testing
as extra work. Think of it as putting a
different spin on the testing you already
have to do. I’ve found that testing with
a more global perspective in mind ex-
poses bugs that you might otherwise
miss. These bugs generally result from
one of two things:

1. Changes to the system environment

2. Changes to the data inputs and out-
puts

Changes to the OS Settings
In this category, I place any change to
the computer’s operating system that
takes place before you install the Appli-
cation Under Test (AUT). Customiza-
tions to the operating system are often
not taken into account by the develop-
ment team.

There are many little settings that
you can change in your operating sys-
tem configuration that will make it

www.stickyminds.com

more fit for use than going with the de-
fault options. These include setting the
time zone, character set, country or re-
gion locale, currency, date and time for-
mats, and so on. They may seem unre-
markable at first glance, but just try
changing some settings and see what im-
pact there is on your AUT.

How do you know which settings to
change? Change ’em all!

I usually leave one test machine with
the default “out of the box” configura-
tion so that we have a computer against
which to compare bugs. With the other
test systems, I give them “themes” and
modify the OS settings to match.
Themes might include setting up a sys-
tem for an East or West Coast North
American city, a different country, or
someplace on a different continent.
Look for interesting values when mak-
ing these kinds of system changes. For _
example, if your standard date format is %
mm/dd/yyyy, change it to dd/mm/yyyy.

Pick settings that look similar to a de- 2



Bug Report

fault value but perhaps with certain val-
ues transposed or replaced. When decid-
ing which values to select, I usually look
for a pattern in the available choices
and then pick the one that seems to
stand out or break the pattern.

What can you expect when you
make changes like these? Assuming that
the AUT is well behaved and doesn’t im-
mediately choke when you install it
(such as with my AV app bug described
earlier), there are many possible out-
comes depending on the level of interna-
tionalization and localization support
designed into the program.

= Changes to date, time, number, and
currency formats should be automati-
cally detected and applied throughout
the AUT without error. Database
queries based on any of these should
continue to work as expected.

= In a Client-Server testing environ-
ment, changing the time zones for the
various workstations and server can ex-
pose interesting date-related issues. I
once encountered a set of bugs specifi-
cally occurring once a year (in the fall)
because the clock automatically turned
back an hour on the server for Daylight
Savings Time. So don’t forget to check
the scheduled time for your database
backups or server maintenance tasks!

Le Testing for Language
_ Resource Support

If your application supports alternate languages via a Language Resource string component,
there is a simple trick that you can use so that any tester can successfully identify localization
bugs. Make a copy of the default language (e.qg., English) string set and then alter it in some

identifiable way. Be creative!

For example, we once called this new set “Le English” and placed the word “Le" at the begin-
ning of each string or sentence. Then we changed the application setup so that it would use
the “Le English” resource strings instead of the default language. A simple GUI walkthrough
quickly identified all the places where the strings were missing and the text labels did not re-

size correctly.

Using a pseudo-language that's still readable in your native language lets you quickly identi-
fy any bugs or omissions while still allowing you to read the Ul and use the application for
testing. By spending some time keeping the new pseudo-language resource string set up-
dated, your localization testing should integrate seamlessly with your other planned testing

activities.

40 BETTER SOFTWARE

If you find yourself

in a situation where
you have translated
language strings,
request an internal
“business expert” of
some sort who is
fluent in the particular
language to validate
the translations.

= If a country or language locale setting
has been changed, any language re-
source strings your AUT has should
kick in automatically. The menu options
should appear in the correct language,
dialog boxes and windows should auto-
matically resize to compensate for the
different text labels, etc. This requires
simple GUI walkthrough tests that any-
one can do. (See Sidebar.)

If you actually have internationalization
requirements that say you support oper-
ating systems in a different native lan-
guage, you should install the supported
operating system(s) in your test environ-
ment. Don’t assume that changing the

FEBRUARY 2005 www.stickyminds.com

regional settings on a native English OS
will be the same as running the OS in a
different native language. There may be
variations in the different OS versions
that could expose bugs in your AUT.

Changes to the Data Inputs
and Outputs

You don’t have to make any changes to
your operating system setup to detect
potential internationalization bugs. Just
consider the names you use for your
“test users.” I’m sorry, but “John
Smith” just isn’t a good choice. (“John
Smith” is better.)

I always include European characters
(from the extended Latin character set)
in my test user names. Try these special
and accented characters in the User ID
or User Name values (umlauts have
been particularly good at breaking Lo-
gin screens!). And there’s always my
personal favorite: “Miles O’Brian.” It
may look innocent, but names with sin-
gle and double quotes often break
unchecked SQL calls in various places.

I’ve found that many translation
shops make many errors when they
translate technical applications. One of
my favorite localization bugs was seeing
the “Exit” menu option translated as
“This is the End”—not quite the same
meaning and somewhat depressing. If
you find yourself in a situation where
you have translated language strings, re-
quest an internal “business expert” of
some sort (perhaps a sales/marketing
person or a consultant) who is fluent in
the particular language to validate the
translations. It’s always been worth it
for me.

What about ideogrammatic lan-
guages such as Chinese or Japanese? As
with other tests, you need to consider
how the data will be entered; what
kinds of characters will be allowed; how
this data will be used; and what sort of
output is expected.

I tested an application once that
stored and retrieved all double-byte
characters entered by the user. The tests
I did here were not much different from
what I do with my simple European
character tests:

= Input something the AUT should
handle.



= Check to see how it is stored in the
database.

= Find all the places where the data can
be retrieved and displayed (e.g., text
fields, combo drop-down boxes, title
bars, reports, etc.).

= Find all the places where you can out-
put the data (e.g., printers, files, file-
names, images, etc.).

= Find all the places where the data can
interact with third-party components.
(Export some data and try to use it with
a different program. Are there any com-
mand-line applications? There are usu-
ally lots of bugs lurking in feature inter-
actions.)

Before you start testing, you should
have an idea of the scope of language
support that the application is supposed
to handle. If you do not have explicitly
stated internationalization require-
ments, then at the very least use some
extended Latin characters in your data

Before you start
testing, you should
have an idea of

the scope of lan-
guage support that
the application is
supposed to handle.

inputs when testing. With a little time
spent upfront carefully selecting your
test inputs and setting up your test envi-
ronment, internationalization and local-
ization testing should fall nicely into the
background of your regular testing ac-
tivities.

You don’t have to know or speak an-
other language to be able to do this kind
of testing. It might help if you do, but
it’s not a requirement—that’s a myth
that may explain why so many testers
I’ve known tended to shy away from
these kinds of tests. Done properly,

Bug Report

these tests should be fun and can expose
a lot of really interesting bugs. With a
little bit of applied effort, you might
learn something new about a different
culture or language—or even make new
friends in a different part of the world.
Have fun. Learn. Explore! {end}

Paul Carvalbo has been a software tester
for more than ten years. He specializes in
black box software testing and quality
assurance. Paul can be reached at paul@
staqs.com.

Sticky
Notes

For more on the following topics go to
www.stickyminds.com/bettersoftware

= Links to online 118N Testing resources

= \Where to get ideas for
Internationalized user names

= Where to download a FREE book on
Software Testing with a chapter on
Internationalization and Localization
Testing

www.stickyminds.com

FEBRUARY 2005 BETTER SOFTWARE 41


Paul
Rectangle




