
Unscripted Automation

Kitchener-Waterloo Software Quality
Association
March 2009

By Paul Carvalho
Copyright © 2009

http://www.STAQS.com/

© 2009 Paul Carvalho

What do you Automate?

Tests? (if so, what kind?)

Data setup?
Performance measurements?
Report generation?
...?

“Test automation is any use of tools
to support testing” – James Bach

Interesting Set:
These Scripts
usually created
for a specific
purpose

© 2009 Paul Carvalho

Can Computers Test?
I don’t think so.

Computers can’t think
Computers don’t understand test techniques
Computers can’t observe beyond what they’re programmed
to observe
Computers can’t interpret results

Computers are good at repeating the exact same
steps every single time (humans generally aren’t)

Is there value in this?

© 2009 Paul Carvalho

Computer-Assisted Testing
Computers can help you test
Questions to ask yourself:

What kinds of tests are worthwhile automating?
Can you compensate for the Minefield problem?
Can you write low-maintenance tests?

How about if you let the computer drive
while you observe and evaluate?
(read Jonathan Kohl’s article – available online)

© 2009 Paul Carvalho

Experience Report (ER)
I can’t tell you how to make test automation work in
each individual situation, so I’ll talk about how it’s
worked for me.

There might be something here that you may learn from or
find useful on your own projects

So, here’s a tale of how I use test automation in a
way that works for me .. right now .. on a specific
application .. in my current team ...

© 2009 Paul Carvalho

ER – Project Background
Application/System Under Test:

Web app: .Net, JavaScript, ASP, BizTalk, SQL db
Browsers: IE (mostly), Firefox, Safari and others
O/S’s: Windows (mostly), Mac, Linux

Industry = Financial
App does calculations
It takes inputs and produces reports & charts
Lots of fiddly bits (other functionality) too

© 2009 Paul Carvalho

ER – Test Automation
Scripting Environment:

Ruby
WATIR (Web Application Testing in Ruby)
other libraries as required

Case Study: Automation script most frequently used:
Smoke Test (quick Functional test at the System level)

Performs a quick walkthrough of the app to check that the
main features/components are working
Finds lots of bugs
Low maintenance
Execution is different every time!

© 2009 Paul Carvalho

ER – How does the Script work?
Script decides which environment it wants to use

It looks up the valid user ID and password to log in
Starts up a web browser and testing begins

The script has a basic mission to ‘walk’ through the
application

It decides what data it uses as it goes along. It makes stuff
up too. It looks totally random.
It logs any critical bugs found to output files. Other
unexpected bugs are output to screen.
Additional bugs found if you watch it execute.

© 2009 Paul Carvalho

ER – Anatomy of the Script
The automated script is modelled using these key
principles:

1. Data Driven – i.e. don’t hard-code any specific values to
use/input

2. Regular Expressions – find things using the simplest
possible expressions

3. Equivalence Classes – all things being equal, let the
computer decide what values in a range to use

4. Random – Don’t execute the same tests twice
5. Don’t Repeat Yourself (DRY) – avoid code duplication

Test

Technique

Alert !!

© 2009 Paul Carvalho

ASIDE: Is this MBT?

No, this is not Model-Based Testing
It’s a good step in that direction though

Reading Suggestion:
Harry Robinson’s Model-Based Testing articles &
presentations

Honk if you love to
crash software

© 2009 Paul Carvalho

ER – Script – Finds Bugs How?
Key factors in script development:

Data-driven
Have the code make decisions based on the information
displayed on screen
More closely resembles how a human would test

Teach the code to recognise Equivalence Classes
What are the valid & invalid inputs for a given field?
Teach the computer to figure it out and select values randomly
Similar to Soap Opera Testing – use interesting values

Random execution
Every time it runs, it follows slightly different paths
(considers the Minefield problem)

© 2009 Paul Carvalho

ASIDE: Data Driven – Example

Consider a Drop-Down List => contents are crayon
colours.

Before: (Scripted approach)
ddl_array = [‘red’, ‘green’, ‘blue’, ‘yellow’]

crayon_picked = ddl_array[2]

What if the array changes?! (and why hard-code the selection?)

After: (Data-driven)
ddl_array = drop_down_list.getAllContents

i.e. never hard-code values!
Let the computer figure out what it has to work with

crayon_picked = ddl_array[rand(ddl_array.length)]

Pick a random item in the list

© 2009 Paul Carvalho

ASIDE: Equivalence Classes – Example

This Test Technique is important to understand
When you look at an element, how do you decide which
item to select in a list? What value to input in a field? ...

e.g. Name input field: (Scripted approach)
user_name_field.set(“James”)

What value is there in a test that repeats this input *every* time?

Name input field: (E.C.-aware)
upper_limit = user_name_field.maxlength
user_name_field.set(random_input('char',rand(upper_limit)))

‘random_input’ method generates random chars of a set length
Put whatever you want into each field – change it up!
If the ‘maxlength’ property isn’t set, what will happen?

© 2009 Paul Carvalho

ER – Script – Low Maintenance?
Key factors in script development:

Data-driven
You don’t have to update the code every time the application
content changes

Regular expressions
Makes your code less sensitive to changes in object
names/labels
These are important! Learn these!

Avoid Code Duplication (DRY)
Reduces time spent updating code
Develop good programming habits

© 2009 Paul Carvalho

ER – Summary – Unscripting Tests
We’ve Unscripted our test automation by:

Removing exact test steps from the code
Removing exact test inputs to use from the code
Programming path guidelines (decision models) through
the app
Teaching the script to identify the data it needs as it goes
along
Teaching the script to input data “randomly” based on field
types and limits
Programming simple Oracles to help identify bugs
(knowing that the computer will miss many more)

© 2009 Paul Carvalho

Summary – How about you?
These principles can be applied to whatever
tool/scripting language you currently use
A good tester or programmer should be able to write
good automated test scripts
A good tester paired with a good programmer
should be able to write great automated test scripts!

“Automating garbage produces
fast trash” – (author unknown)

© 2009 Paul Carvalho

Recommended References

Articles: (there are many, here are a few I like)

“Man and Machine: Combining the Power of the Human
Mind with Automation Tools”

Jonathan Kohl, Better Software, December 2007
“Old School Meets New Wave”

Chris McMahon, Better Software, June 2006

People: (read their papers & presentations on Automation)

Doug Hoffman - http://www.SoftwareQualityMethods.com/

Bret Pettichord - http://www.Pettichord.com/

Harry Robinson - http://www.geocities.com/harry_robinson_testing/

http://www.softwarequalitymethods.com/
http://www.pettichord.com/
http://www.geocities.com/harry_robinson_testing/

© 2009 Paul Carvalho

Demo
Ruby & Watir in action

Automated scripts demonstrate the principles in action
Test app = simple Bookstore web app

	Unscripted Automation
	What do you Automate?
	Can Computers Test?
	Computer-Assisted Testing
	Experience Report (ER)
	ER – Project Background
	ER – Test Automation
	ER – How does the Script work?
	ER – Anatomy of the Script
	ASIDE: Is this MBT?
	ER – Script – Finds Bugs How?
	ASIDE: Data Driven – Example
	ASIDE: Equivalence Classes – Example
	ER – Script – Low Maintenance?
	ER – Summary – Unscripting Tests
	Summary – How about you?
	Recommended References
	Demo

